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Abstract
We study connections between the spectral distributions of random matrices and
discretizations of elliptic partial differential operators. By examining eigenvalue statis-
tics of finite-difference Laplacians perturbed by random noise, we demonstrate conver-
gence toward universal ensembles predicted by random matrix theory. This provides a
computational framework linking numerical PDE solvers to statistical predictions from
quantum chaos.

1 Introduction

Random matrix theory (RMT) has long described universal spectral features across quantum
systems, number theory, and high-dimensional statistics. In numerical PDEs, discretizations
of operators such as the Laplacian produce large structured matrices whose spectra encode
analytic properties of the underlying domain.

2 Main Observation

Let Lj denote the finite-difference Laplacian on a uniform grid of mesh size h, and let
Ap = Ly + €Ry,, where Ry is a random symmetric perturbation. As h — 0 and ¢ — 0,
the normalized eigenvalue gaps of A; converge in distribution to those of the Gaussian
Orthogonal Ensemble (GOE).

3 Numerical Illustration

Simulations of Ay, on [0, 1]? using 100 x 100 grids reveal that even small random perturbations
produce GOE-like level spacing statistics. This confirms the universality conjecture in a
numerical PDE setting.

4 Conclusion

The spectral universality observed in numerical PDE matrices suggests a deep interplay
between discretization theory and random matrix models, with implications for stability
analysis and uncertainty quantification.
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