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Abstract
The 3-sphere S3 is a fundamental object in geometry and topology, representing

the set of points equidistant from the origin in four-dimensional space. Although it
cannot be directly visualized in Euclidean 3-space, its structure can be understood
through coordinate systems, projections, and analytic parametrizations derived from
multivariable calculus. This paper introduces several techniques for visualizing S3 and
interpreting its curvature and topology through calculus and differential geometry.

1 Introduction

The 3-sphere S3 is defined as

S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1}.
It serves as the natural generalization of the circle S1 ⊂ R2 and the ordinary sphere S2 ⊂ R3.
Despite its four-dimensional embedding, calculus and geometry allow us to understand S3

through analytic descriptions and lower-dimensional projections.

2 Parametrization via Angles

A convenient parameterization of S3 uses three angular coordinates (θ, ϕ, ψ):

x = cos θ cosϕ,

y = cos θ sinϕ,

z = sin θ cosψ,

w = sin θ sinψ,

where θ ∈
[
−π

2
, π
2

]
, ϕ, ψ ∈ [0, 2π).

Each value of θ corresponds to a torus S1 × S1 embedded in S3. Thus S3 can be visual-
ized as a continuous family of linked tori shrinking to circles at the poles. This geometric
decomposition is known as the Hopf fibration.

3 Stereographic Projection

To render S3 in three dimensions, one uses stereographic projection from the north pole
(0, 0, 0, 1) onto the hyperplane w = 0:

π(x, y, z, w) =

(
x

1− w
,

y

1− w
,

z

1− w

)
.
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This mapping preserves smoothness and conformality, producing a 3D representation of S3 in
R3. Curves and tori under this projection appear as nested, linked shapes, visually expressing
the Hopf structure.

4 Curvature and Differential Geometry

The induced metric on S3 from R4 is

ds2 = dθ2 + cos2 θ dϕ2 + sin2 θ dψ2,

with constant sectional curvature +1. The Christoffel symbols and curvature tensors can
be computed directly from this metric using multivariable calculus, confirming that S3 is a
Riemannian manifold of constant positive curvature.

5 Computational Visualization

In computer visualization, we approximate S3 by sampling points in R4 satisfying x2 +
y2 + z2 + w2 = 1, then projecting to R3 via stereographic projection. The mapping can be
implemented as:

(x′, y′, z′) =
(x, y, z)

1− w
.

Color or transparency can encode the hidden w-dimension. This approach allows rendering
linked tori and geodesics of S3 in standard 3D visualization software.

6 Conclusion

The 3-sphere embodies a profound synthesis of algebra, calculus, and geometry. Through
explicit parametrizations and projections, one can visualize its structure and curvature,
revealing the hidden beauty of higher-dimensional manifolds in familiar 3D space. Calculus
provides both the local analytic tools and the global invariants that make this visualization
mathematically rigorous.
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Ann., 104(1):637–665, 1931.

[2] W. P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, Princeton University
Press, 1997.

[3] J. M. Lee, Introduction to Riemannian Manifolds, 2nd ed., Springer, 2018.

2


	Introduction
	Parametrization via Angles
	Stereographic Projection
	Curvature and Differential Geometry
	Computational Visualization
	Conclusion

